calculating Γ . However, since the low temperature region is eliminated, the assumption Γ/ν = constant may be a reasonable one. Then Eq. (2.4) becomes

$$p = p_{i} + b (E-E_{i})$$
 (2.5)

$$E_{H} = E_{O} + \frac{1}{2} p_{H} (v_{O} - v)$$
 (2.6)

$$dE_{i} = (T_{o} (\partial p/\partial T)v - p_{i})dv$$

$$= (bC_{v}T_{o} - p_{i})dv$$
(2.7)

where b = Γ/v = constant, C_v = constant, $p_i(v)$ and $E_i(v)$ are pressure and internal energy, respectively, on the T_o isotherm, and subscript "H" refers to the Hugoniot curve. Setting p and E in Eq. (2.5) equal to p_H and E_H and combining with Eqs. (2.6) and (2.7) yields a differential equation for p_i :

$$(dp_i/dv) + bp_i = (1 - b(v_o-v)/2)(dp_H/dv)$$

 $+ bp_H/2 + b^2C_vT_o$ (2.8)

The solution of this equation is

$$p_{i}(v) = A \exp(-bv) + bC_{v}T_{o}B$$

$$A = f(v) - b\int_{v_{o}}^{v} f(v) dv$$

$$B = 1 - \exp(b(v_{o}-v))$$

$$f(v) = (1 - (b/2)(v_{o}-v)) p_{H} \exp(bv).$$
(2.9)

Experience has shown that Hugoniot data for liquids and solids can be fitted quite well by curves of the form

$$p_h(v) = \sum_{n=1}^{3} a_n x^n$$
 (2.10)

where $x = \rho v_0 - 1$.

Equations of the form (2.10) have been fitted to shock data on liquids and used to calculate $p_i(v)$ and $E_i(v)$ from Eqs. (2.9) and (2.7), respectively. The numerical results are used in a least squares procedure to calculate the coefficients b_n in the equation for isothermal pressure:

$$p_{i} = \sum_{n=1}^{3} b_{n} x^{n}$$

where $x = \rho v_0^{-1}$ as in Eq. (2.10). The coefficients a_n and b_n are given in Table I.